[ML] Lab 6
ยท
๐Ÿฆ„AI/ML
Lab 6์˜ ์ฃผ์ œ๋Š” Neural Network์ด๋‹ค. ๊ทธ ์ค‘์—์„œ Fully connected layer๋ฅผ ๊ตฌํ˜„ํ•ด๋ณธ๋‹ค. ์ด์ „์— ๋ฐฐ์šด Neural network ์— ๋Œ€ํ•ด์„œ ์ž ๊น ์‚ดํŽด๋ณด๊ณ  ๊ฐ„๋‹ค. Forward Pass bias๋Š” ์ƒ๋žตํ•˜์˜€๊ณ , z์™€ a ์‚ฌ์ด์—๋Š” sigmoid Activation function์ด ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰ ๊ฒฐ๊ณผa ์™€ Ground Truth ์ธ y๋ฅผ ํ†ตํ•ด error J๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค. ์ดํ›„ back propagation์„ ํ†ตํ•ด์„œ parameter๋ฅผ ์—…๋ฐ์ดํŠธ ํ•œ๋‹ค. Fully Connected Layer ๊ตฌํ˜„ Class : FC Layer Class : Acticvation Layer
[ML] k-Nearest Neighbors
ยท
๐Ÿฆ„AI/ML
์˜ค๋Š˜์€ kNN ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•ด์„œ ์•Œ์•„๋ณธ๋‹ค. k-Nearest Neighbors(kNN) kNN์•Œ๊ณ ๋ฆฌ์ฆ˜์€ classification๋ฌธ์ œ๋ฅผ ํ‘ธ๋Š” ๋ฐฉ์‹์ด๋‹ค. ์œ„์˜ ๊ทธ๋ฆผ์„ ๋ณด์ž. ๊ธฐ์กด ํŠธ๋ ˆ์ด๋‹ ๋ฐ์ดํ„ฐ๋“ค์ด ์ฃผํ™ฉ์ƒ‰, ์ดˆ๋ก์ƒ‰ ๋ฐ์ดํ„ฐ์ด๊ณ , ์šฐ๋ฆฌ๋Š” ๋นจ๊ฐ„์ƒ‰ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๊ฐ€ ์–ด๋Š ํด๋ž˜์Šค์— ์†ํ• ์ง€ ์•Œ๊ณ  ์‹ถ๋‹ค. ์ด ๊ฒฝ์šฐ kNN์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐ€์žฅ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฐ€๊น๊ฑฐ๋‚˜, ๋น„์Šทํ•œ point k๊ฐœ์˜ class๋ฅผ ์‚ดํ•€๋‹ค. ๋นจ๊ฐ„ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋Š” ์ด ํด๋ž˜์Šค๋“ค ์ค‘ ๋‹ค์ˆ˜ ํด๋ž˜์Šค๋กœ ๋ถ„๋ฅ˜๋œ๋‹ค. ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ข€ ๋” ๋‹จ๊ณ„์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. Standardize the features to have Normal dist find k samples closest to the testing instance take classificationo output..
[ML] Neural Networks (Part1)
ยท
๐Ÿฆ„AI/ML
์ด๋ฒˆ ํฌ์ŠคํŒ…์—์„œ๋Š” Neural Network์˜ ๊ธฐ๋ณธ์„ ์•Œ์•„๋ณธ๋‹ค. Introduction to a neural nework single neuron์—์„œ neural network ์˜ ๊ตฌ์กฐ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ƒ๊ฒผ๋‹ค. x๋Š” input, w๋Š” weight, b๋Š” bias. f๋Š” activation function์ด๋‹ค. activation func์˜ ์˜ˆ์‹œ๋ฅผ ReLU๋ผ๊ณ  ํ•  ๋•Œ, ๋‰ด๋Ÿฐ ํ•˜๋‚˜๋ฅผ ํ†ต๊ณผํ•œ ๊ฒฐ๊ณผ๋ฅผ h(x)๋ผ ํ•  ๋•Œ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์šฐ๋ฆฌ๋Š” ReLU์™€ ๊ฐ™์€ activation ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ๋น„์„ ํ˜•์„ฑ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ด์™€ ๊ฐ™์€ layer๋ฅผ stackํ•จ์œผ๋กœ ๋ชจ๋ธ์ด ๋” ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๋ชจ๋ธ์„ ํ•˜๋‚˜ ๋” ์Œ“์€ ๊ฒฝ์šฐ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ชจ์Šต์ด ๋œ๋‹ค. ์ด์ œ ์—ฌ๋Ÿฌ๊ฐœ์˜ feature๋ฅผ neural ..
[Machine Learning] Decision Trees
ยท
๐Ÿฆ„AI/ML
Decision Tree ๋จธ์‹  ๋Ÿฌ๋‹์—์„œ Decision Tree๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๊ฑฐ๋‚˜ ์˜ˆ์ธกํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์ด ๋ฐฉ์‹์€ Classification๊ณผ Regression์— ๋ชจ๋‘ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค Decision Tree๊ฐ€ ์–ด๋–ป๊ฒŒ ์ƒ๊ฒผ๋Š”์ง€ ์‚ดํŽด๋ณธ๋‹ค. Root node์™€ Leaf node์— ํ•ด๋‹นํ•˜๋Š” ์‚ฌ๊ฐํ˜•์—๋Š” feature๊ฐ€ ๋“ค์–ด๊ฐ„๋‹ค. Branch์˜ ๊ฒฝ์šฐ ์œ„์˜ feature์— ๋Œ€ํ•œ ๋‚ด์šฉ์ด ๋œ๋‹ค. Classification ๋จผ์ €, Decision tree๋ฅผ ํ†ตํ•ด classification ๋ฌธ์ œ๋ฅผ ์–ด๋–ป๊ฒŒ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์•Œ์•„๋ณธ๋‹ค. ์ด๋ฒˆ ํฌ์ŠคํŒ…์—์„œ ์˜ˆ์‹œ๋กœ ๋“œ๋Š” data์™€ classification ๋ฌธ์ œ๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค. Start ๋จผ์ € feature๋ฅผ outlook์œผ๋กœ ํ•˜์—ฌ decision tree๋ฅผ ์ž‘์„ฑํ•ด๋ณด..
[ML] Generative learning algorithm
ยท
๐Ÿฆ„AI/ML
๋ฒ ์ด์ฆˆ ์ •๋ฆฌ P(A|B): ์‚ฌ๊ฑด B๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ ์‚ฌ๊ฑด A์˜ ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ  (A๊ฐ€ ์ผ์–ด๋‚  ํ™•๋ฅ ) P(B|A): ์‚ฌ๊ฑด A๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ ์‚ฌ๊ฑด B์˜ ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ  (B๊ฐ€ ์ผ์–ด๋‚  ํ™•๋ฅ ) P(A): ์‚ฌ๊ฑด A์˜ ์‚ฌ์ „ ํ™•๋ฅ  (B์— ๋Œ€ํ•œ ์–ด๋– ํ•œ ์ •๋ณด๋„ ์—†์„ ๋•Œ A๊ฐ€ ์ผ์–ด๋‚  ํ™•๋ฅ ) P(B): ์‚ฌ๊ฑด B์˜ ์‚ฌ์ „ ํ™•๋ฅ  (A์— ๋Œ€ํ•œ ์–ด๋– ํ•œ ์ •๋ณด๋„ ์—†์„ ๋•Œ B๊ฐ€ ์ผ์–ด๋‚  ํ™•๋ฅ ) ๋ฒ ์ด์ฆˆ ์ •๋ฆฌ๋Š” ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ  P(A|B)๋ฅผ ์•Œ๊ณ  ์‹ถ์„ ๋•Œ, P(B|A)์˜ ํ™•๋ฅ ์„ ์ด์šฉํ•˜์—ฌ ์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์œ ์šฉํ•˜๋‹ค Generative learning algorithm generative learning algorithm์—์„œ ๋ฒ ์ด์ฆˆ ์ •๋ฆฌ๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•œ๋‹ค. generative learning algorithm์—์„œ๋Š” ๋ฐ์ดํ„ฐ์˜ ๊ธฐ๋ฐ˜์ด..
[ML] Gaussian Discriminant Analysis
ยท
๐Ÿฆ„AI/ML
Background ์ด๋ฏธ ์•Œ ๋ฒ•ํ•œ ๊ฐ„๋‹จํ•œ ๋‚ด์šฉ์ด์ง€๋งŒ, GDA๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ background๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. โ“Multivariate normal distribution https://en.wikipedia.org/wiki/Multivariate_normal_distribution โ“Bernoulli distribution https://en.wikipedia.org/wiki/Bernoulli_distribution โ“Generative learning algorithm โ“Maximum Likelihood Estimation Gaussian Discriminant Analysis โ— Assumption โ— p(x|y) is distributed according to a multivariate nor..
[ML]Linear Models for Regressions (part1)
ยท
๐Ÿฆ„AI/ML
Linear regression model Linear regressions is defined as an algorithm that provides a linear relationhip between an independent variable and a dependent variable to predict the outcome of future events. ๋ชจ๋ธ์ด ์„ ํ˜•์ด๋ผ๋Š” ๊ฒƒ์€ ์ถ”์ •ํ•ด์•ผ ํ•  ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•ด์„œ ์„ ํ˜•๋ณ€ํ™˜์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค. ์„ ํ˜•๋ณ€ํ™˜ ๊ฐ€์‚ฐ์„ฑ: X,Y๋ฅผ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ์Œ ๋™์งˆ์„ฑ : a๋ฅผ ์‹ ๋ฐ–์œผ๋กœ ๋ถ„๋ฆฌํ•  ์ˆ˜ ์žˆ์Œ ์ด๋Š” ์ฆ‰, ๊ฐ€์‚ฐ์„ฑ๊ณผ ๋™์งˆ์„ฑ์„ ๋งŒ์กฑํ•˜๋Š” ๊ฒฝ์šฐ ์„ ํ˜•๋ณ€ํ™˜, ์„ ํ˜•๋ณ€ํ™˜์„ ๋งŒ์กฑํ•œ๋‹ค ๋ผ๊ณ  ํ•œ๋‹ค. ์‹ค๋ณ€์ˆ˜ ๋ฒกํ„ฐ๊ณต๊ฐ„์—์„œ ๋ฒกํ„ฐX, Y์™€ ์Šค์นผ๋ผ a์— ๋Œ€ํ•ด์„œ ๋‹ค์Œ์„ ๋งŒ์กฑํ•˜๋Š” ํ•จ์ˆ˜ T๋ฅผ ์„ ํ˜•..
Loss Function: Hinge Loss
ยท
๐Ÿฆ„AI/ML
Loss Function quantifies our unhappiness with the scores across the training data. ๋ชจ๋ธ์˜ ํ•™์Šต ๊ฒฐ๊ณผ๋กœ ์–ป์–ด๋‚ธ ์˜ˆ์ธก๊ฐ’(score)์ด ์‹ค์ œ๊ฐ’๊ณผ ์–ผ๋งˆ๋‚˜ ๋‹ค๋ฅธ์ง€ ์ˆ˜์น˜ํ™”ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์ด๊ฒƒ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ด Loss function์ด๋‹ค. Loss function(=cost func)์„ ํ†ตํ•ด ์–ป์–ด๋‚ธ unhapiness๋ฅผ ์šฐ๋ฆฌ๋Š” loss(cost)๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. Loss๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋ช‡๊ฐ€์ง€ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ ์•Œ์•„๋ณด์ž. Hinge Loss hinge loss๋Š” Support Vector Machine์—์„œ ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— SVM loss๋กœ ๋ถˆ๋ฆฌ๊ธฐ๋„ ํ•œ๋‹ค. Binary hinge loss (binary SVM loss) ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ํ˜•ํƒœ์˜ b..