[Computer Vision/OpenCV] 20. Feature Descriptor(1)

2025. 5. 22. 13:09ยท๐Ÿฆ„AI/Computer Vision

์˜ค๋Š˜์€ Feature Descriptor๊ฐ€ ๋ฌด์—‡์ธ์ง€, ์–ด๋–ค ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์žˆ๋Š”์ง€ ํฐ ํ‹€์—์„œ ์•Œ์•„๋ณด๋„๋กํ•œ๋‹ค.

Feature Descriptor๋Š” ์ด๋ฏธ์ง€์˜ ํŠน์ง•์ ์„ ์ˆ˜์น˜ํ™”ํ•˜๋Š” ๋„๊ตฌ๋กœ, object detection, panorama matching ๋ถ€ํ„ฐ SLAM๊นŒ์ง€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋œ๋‹ค.

1. Feature Descriptor๋ž€ ๋ฌด์—‡์ธ๊ฐ€?

Feature descriptor๋ž€, ์ด๋ฏธ์ง€ ๋˜๋Š” ์˜์ƒ ๋‚ด์—์„œ ๊ฒ€์ถœ๋œ keypoint(ํŠน์ง•์ ) ์ฃผ๋ณ€์˜ ์‹œ๊ฐ์  ์ •๋ณด๋ฅผ ์ผ์ •ํ•œ ๊ทœ์น™์— ๋”ฐ๋ผ ์ˆ˜์น˜ ๋ฒกํ„ฐํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ๊ตฌ์กฐ๋กœ ๋งŒ๋“ค๊ณ , ์ด๋ฅผ ์ด์šฉํ•ด ๋Œ€์‘๋˜๋Š” ๋น„์Šทํ•œ point๋ฅผ ์ฐพ์•„๋‚ด๋Š” ๊ฒƒ์„ ๋งํ•œ๋‹ค.

์ด ๋ฒกํ„ฐ๋Š” ํ•ด๋‹น ํ‚คํฌ์ธํŠธ์˜ ์ง€์—ญ์  ํŠน์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ์š”์•ฝํ•˜๊ณ  ์„œ๋กœ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€ ๊ฐ„์—๋„ ๋™์ผํ•œ ์‹ค์ œ ์ง€์ ์„ ํšจ๊ณผ์ ์œผ๋กœ ๋งค์นญํ•  ์ˆ˜ ์žˆ๋„๋กํ•œ๋‹ค.

 

์˜์ƒ ์‚ฌ์ด์— ๋งค์นญ๋˜๋Š” ์ง€์ ์„ ์ฐพ๋Š” ์ผ์€ ์–ด๋ ค์šด ์ผ์ด๋‹ค.

๋Œ€์‘๋˜๋Š” feature๋ฅผ ๋งค์นญํ•˜๋ ค๋ฉด ์–ด๋–ค ๊ณผ์ •์ด ํ•„์š”ํ• ๊นŒ?

๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ˆœ์„œ๋กœ ์ง„ํ–‰๋  ๊ฒƒ์ด๋‹ค.

1. Distinctive keypoints์˜ ์ง‘ํ•ฉ์„ ์–ป๋Š”๋‹ค.

2. ๊ฐ keypoint์˜ ์˜ฌ๋ฐ”๋ฅธ region์„ ์ •์˜ํ•ด์•ผ ํ•œ๋‹ค. ์ด region์˜ ์ •๋ณด๊ฐ€ ๋น„์Šทํ•˜๋ฉด ๋Œ€์‘๋˜๋Š” ์ง€์ ์ผ ๊ฒƒ์ด๋‹ค.

3. extract and normalize region content

4. ์–ป์€ region ์ •๋ณด์—์„œ local descriptor๋ฅผ ๊ณ„์‚ฐํ•ด๋‚ธ๋‹ค.

5. local descriptors๋ฅผ matching ํ•œ๋‹ค.

 

์—ฌ๊ธฐ์„œ ์ œ์ผ ์–ด๋ ค์šด ๋ถ€๋ถ„์€ 2๋ฒˆ์ด๋‹ค. 

์œ„์˜ ์˜ˆ์‹œ์ฒ˜๋Ÿผ ์ด๋ฏธ์ง€๊ฐ€ ํšŒ์ „ํ•˜๊ณ , ์Šค์ผ€์ผ์ด ๋‹ค๋ฅธ ์ด๋ฏธ์ง€์—์„œ ์–ด๋–ป๊ฒŒ ์ ์ ˆํ•œ region์„ ์ฐพ์•„๋‚ผ ๊ฒƒ์ธ๊ฐ€?

์ด๋Ÿฐ ๋ถ€๋ถ„์„ ํ•ด๊ฒฐํ•˜๋ฉด์„œ ์ข‹์€ descriptor๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ด feature descriptor ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋ชฉํ‘œ์ด๋‹ค.

 

 

Feature descriptor๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ชฉ์ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค

  • ํšจ์œจ์  ๋งค์นญ: ์ด๋ฏธ์ง€ ๊ฐ„์˜ ๊ฐ์ฒด, ์˜์—ญ, ํŒจํ„ด์„ ํšจ๊ณผ์ ์œผ๋กœ ๋น„๊ต ๋ฐ ์ •ํ•ฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•จ
  • ๋ถˆ๋ณ€์„ฑ ํ™•๋ณด: ํšŒ์ „, ์Šค์ผ€์ผ, ์กฐ๋ช… ๋ณ€ํ™” ๋“ฑ ๋‹ค์–‘ํ•œ ์กฐ๊ฑด์—์„œ๋„ ๋™์ผ์„ฑ์„ ์œ ์ง€
  • ์ •๋ณด ์••์ถ•: ๊ณ ์ฐจ์› ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์ฐจ์› ๋ฒกํ„ฐ๋กœ ์š”์•ฝํ•˜์—ฌ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ ๋ฐ ์ €์žฅ ํšจ์œจ์„ฑ ์ฆ๋Œ€

2. Keypoint์™€ Descriptor์˜ ์ฐจ์ด

๊ทธ๋ ‡๋‹ค๋ฉด ํ‚คํฌ์ธํŠธ์™€ descriptor์˜ ์ฐจ์ด์ ์ด ๋ชจํ˜ธํ•˜๊ฒŒ ๋А๊ปด์ง„๋‹ค. ๋‘˜์˜ ์ฐจ์ด๋Š” ๋ฌด์—‡์ผ๊นŒ?

 

Keypoint

์ด๋ฏธ์ง€ ๋‚ด์—์„œ ์˜๋ฏธ ์žˆ๋Š” ๊ตฌ์กฐ(์ฝ”๋„ˆ, ์—์ง€ ๊ต์ฐจ์ , blob ๋“ฑ)๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” (x, y) coordinate ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค.

 

Descriptor

๊ฐ keypoint๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•œ ์ง€์—ญ ํŒจ์น˜์˜ ์‹œ๊ฐ์  ํŠน์„ฑ์„ ์ผ์ •ํ•œ ์ฐจ์›์˜ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„ํ•œ๋‹ค.

์ด ๋ฒกํ„ฐ๋Š” ํŒจํ„ด, ๋ฐฉํ–ฅ์„ฑ, ์งˆ๊ฐ, ๋ฐ๊ธฐ ๋ณ€ํ™” ๋“ฑ ๋‹ค์–‘ํ•œ ์ •๋ณด๋ฅผ ๋‚ดํฌํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, keypoint์˜ ํŠน์ง• ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค.

์ด Descriptor๋Š” ์ง€์—ญ์ ์ธ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋น„์Šทํ•œ ํ˜•ํƒœ๋ฅผ ํ‘œํ˜„ํ•˜๋Š” descriptor๋Š” ๋น„์Šทํ•œ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„๋œ๋‹ค.

๋”ฐ๋ผ์„œ ๋ฒกํ„ฐ ์ŠคํŽ˜์ด์Šค์—์„œ ๋‘ descriptor์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฐ€๊น๋‹ค.

3. ์ข‹์€ Descriptor๋ž€?

Robustness

๋””์Šคํฌ๋ฆฝํ„ฐ๋Š” ์ด๋ฏธ์ง€์˜ ํšŒ์ „, ์Šค์ผ€์ผ ๋ณ€ํ™”, ์กฐ๋ช… ๋ณ€๋™, ๋…ธ์ด์ฆˆ, ๋ถ€๋ถ„ ๊ฐ€๋ฆผ(occlusion) ๋“ฑ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ ๋ณ€ํ™”์—์„œ๋„ ์ผ๊ด€๋œ ํŠน์„ฑ์„ ์œ ์ง€ํ•ด์•ผ ํ•œ๋‹ค.

์˜ˆ์‹œ

SIFT๋Š” ์Šค์ผ€์ผ·ํšŒ์ „ ๋ถˆ๋ณ€์„ฑ์„ ์œ„ํ•ด DoG(Difference of Gaussian) ๊ธฐ๋ฐ˜์˜ ์Šค์ผ€์ผ ๊ณต๊ฐ„ ๋ถ„์„๊ณผ ๊ทธ๋ž˜๋””์–ธํŠธ ๋ฐฉํ–ฅ ์ •๊ทœํ™”๋ฅผ ์ ์šฉ.
PPTFH(Point-Pair Transformation Feature Histograms)์€ 3D ํ‘œ๋ฉด ๋งค์นญ์—์„œ ๋…ธ์ด์ฆˆ์™€ ํ•ด์ƒ๋„ ๋ณ€ํ™”์— ๊ฐ•์ธํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„.

 

Distinctiveness

์„œ๋กœ ๋‹ค๋ฅธ ํŠน์ง•์ ์€ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„๋˜๋Š” ๋””์Šคํฌ๋ฆฝํ„ฐ ๊ฐ’์„ ๊ฐ€์ ธ์•ผ ํ•˜๋ฉฐ, ๋™์ผํ•œ ์ง€์ ์€ ๋ณ€ํ™˜ ํ™˜๊ฒฝ์—์„œ๋„ ์œ ์‚ฌํ•œ ๊ฐ’์„ ์œ ์ง€ํ•ด์•ผ ํ•œ๋‹ค

์˜ˆ์‹œ
SURF๋Š” Haar wavelet ๊ธฐ๋ฐ˜์˜ ๋ฐฉํ–ฅ์„ฑ ํžˆ์Šคํ† ๊ทธ๋žจ์„ ์‚ฌ์šฉํ•ด ๋ถ„๋ณ„๋ ฅ์„ ๋†’์ด๋ ค ํ•จ
๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ SuperPoint๋Š” ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ํ•™์Šต์„ ํ†ตํ•ด ๋ณต์žกํ•œ ๋ณ€ํ™˜์—์„œ๋„ ์„ธ๋ฐ€ํ•œ ๊ตฌ๋ถ„ ๊ฐ€๋Šฅ

 

Compactness

๋””์Šคํฌ๋ฆฝํ„ฐ ๋ฒกํ„ฐ์˜ ์ฐจ์› ์ˆ˜์™€ ์ €์žฅ ๊ณต๊ฐ„์„ ์ตœ์†Œํ™”ํ•˜์—ฌ ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์„ฑ๊ณผ ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ๊ฐ€ ๊ฐ€๋Šฅํ•ด์•ผ ํ•œ๋‹ค

์˜ˆ์‹œ
ORB๋Š” 256๋น„ํŠธ ์ด์ง„ ๋””์Šคํฌ๋ฆฝํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด SIFT(128์ฐจ์› ๋ถ€๋™์†Œ์ˆ˜์ ) ๋Œ€๋น„ 1/16 ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ.
BRISK๋Š” ์ŠคํŒŒ์ด๋Ÿด ์ƒ˜ํ”Œ๋ง ํŒจํ„ด์œผ๋กœ ์ง€์—ญ ์ •๋ณด๋ฅผ ์••์ถ•ํ•ด 512๋น„ํŠธ๋กœ ํ‘œํ˜„

 

Efficiency
์ •์˜: ๋””์Šคํฌ๋ฆฝํ„ฐ ์ƒ์„ฑ ๋ฐ ๋งค์นญ ๊ณผ์ •์—์„œ์˜ ์—ฐ์‚ฐ ์†๋„๊ฐ€ ์‹ค์‹œ๊ฐ„ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์š”๊ตฌ์‚ฌํ•ญ์„ ์ถฉ์กฑํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

์˜ˆ์‹œ
๋ฐ”์ด๋„ˆ๋ฆฌ ๋””์Šคํฌ๋ฆฝํ„ฐ(BRIEF, BRISK)๋Š” ํ•ด๋ฐ ๊ฑฐ๋ฆฌ(Hamming Distance) ๊ธฐ๋ฐ˜ ๋งค์นญ์œผ๋กœ XOR ์—ฐ์‚ฐ๋งŒ์œผ๋กœ ๊ฑฐ๋ฆฌ ๊ณ„์‚ฐ ๊ฐ€๋Šฅ

์†์„ฑ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ ๋ฐ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„

์†์„ฑ ์ƒ์ถฉ ๊ด€๊ณ„ ์ตœ์ ํ™” ์ „๋žต
Robustness ↔ Distinctiveness ๊ณผ๋„ํ•œ ๋ถˆ๋ณ€์„ฑ์€ ๋ถ„๋ณ„๋ ฅ ๊ฐ์†Œ LISRD์ฒ˜๋Ÿผ ์ƒํ™ฉ๋ณ„ ๋ถˆ๋ณ€์„ฑ ์„ ํƒ ๋“ฑ
Compactness ↔ Distinctiveness ์ฐจ์› ์ถ•์†Œ๋Š” ์ •๋ณด ์†์‹ค ์œ ๋ฐœ PCA ๊ธฐ๋ฐ˜ ํŠน์ง• ์ถ”์ถœ ๋˜๋Š” ์ด์ง„ ์–‘์žํ™” ๋“ฑ
Efficiency ↔ Robustness ๋ณต์žกํ•œ ๋ถˆ๋ณ€์„ฑ ์—ฐ์‚ฐ์€ ์ง€์—ฐ ํ•˜๋“œ์›จ์–ด ๊ฐ€์†(GPU/FPGA) ํ™œ์šฉ ๋“ฑ

4. ๋Œ€ํ‘œ์ ์ธ Feature Descriptor ์•Œ๊ณ ๋ฆฌ์ฆ˜

SIFT (Scale-Invariant Feature Transform)

  • ํŠน์ง•: ์ด๋ฏธ์ง€์˜ ์Šค์ผ€์ผ๊ณผ ํšŒ์ „ ๋ณ€ํ™”์— robustํ•œ ๋””์Šคํฌ๋ฆฝํ„ฐ๋ฅผ ์ถ”์ถœ
  • ๋™์ž‘ ์›๋ฆฌ:
    • ์Šค์ผ€์ผ ๊ณต๊ฐ„์—์„œ ๊ทน๊ฐ’์„ ๊ฒ€์ถœํ•˜์—ฌ ๋‹ค์–‘ํ•œ ํฌ๊ธฐ์˜ ๊ฐ์ฒด์— ๋Œ€์‘
    • ๊ฐ ํŠน์ง•์ ์— ์ฃผ ๋ฐฉํ–ฅ์„ ํ• ๋‹นํ•ด ํšŒ์ „์— robustํ•˜๊ฒŒ ๊ฒ€์ถœํ•จ
    • ํŠน์ง•์  ์ฃผ๋ณ€์„ 4x4 ๋ธ”๋ก์œผ๋กœ ๋‚˜๋ˆ„๊ณ  ๊ฐ ๋ธ”๋ก์˜ 8๋ฐฉํ–ฅ ๊ทธ๋ผ๋””์–ธํŠธ ํžˆ์Šคํ† ๊ทธ๋žจ์„ ๊ณ„์‚ฐํ•˜์—ฌ 128์ฐจ์› ๋ฒกํ„ฐ ์ƒ์„ฑ
  • ์žฅ์ : ๋‹ค์–‘ํ•œ ๋ณ€ํ™˜์— ๊ฐ•์ธ
  • ๋‹จ์ : ๊ณ„์‚ฐ๋Ÿ‰์ด ๋งŽ๋‹ค

 

SURF (Speeded-Up Robust Features)

  • ํŠน์ง•: SIFT๋ณด๋‹ค ๋น ๋ฅธ ์†๋„๋กœ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ
  • ๋™์ž‘ ์›๋ฆฌ:
    • ์ ๋ถ„ ์˜์ƒ์„ ํ™œ์šฉํ•ด ๋น ๋ฅธ ์—ฐ์‚ฐ
    • Haar wavelet ๊ธฐ๋ฐ˜์˜ ํŠน์ง• ์ถ”์ถœ
  • ์žฅ์ : SIFT์™€ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ, ๋” ๋น ๋ฅธ ์ฒ˜๋ฆฌ
  • ๋‹จ์ : ์—ฌ์ „ํžˆ ๊ณ„์‚ฐ๋Ÿ‰์ด ๋งŽ๋‹ค

 

BRIEF/BRISK

  • ํŠน์ง•: ์ด์ง„(binary) ๋””์Šคํฌ๋ฆฝํ„ฐ๋กœ, ๋งค์šฐ ๋น ๋ฅธ ๋งค์นญ๊ณผ ๋‚ฎ์€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ์ด ํŠน์ง•
  • ๋™์ž‘ ์›๋ฆฌ:
    • BRIEF: keypoint ์ฃผ๋ณ€ ํ”ฝ์…€ ์Œ์˜ ๋ฐ๊ธฐ ๋น„๊ต๋กœ ์ด์ง„ ๋ฒกํ„ฐ ์ƒ์„ฑ
    • BRISK: ์Šค์ผ€์ผ ๊ณต๊ฐ„์—์„œ keypoint ๊ฒ€์ถœ + ์ด์ง„ ๋””์Šคํฌ๋ฆฝํ„ฐ ์ƒ์„ฑ
  • ์žฅ์ : ์—ฐ์‚ฐ ํšจ์œจ์„ฑ ๋ฐ ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์„ฑ ๋งค์šฐ ๋†’์Œ
  • ๋‹จ์ : ์กฐ๋ช…, ์Šค์ผ€์ผ, ํšŒ์ „ ๋ณ€ํ™”์— ์ƒ๋Œ€์ ์œผ๋กœ ์•ฝํ•จ

 

+) FAST (Features from Accelerated Segment Test)

  • ํŠน์ง•: ๋งค์šฐ ๋น ๋ฅธ ์†๋„๋กœ ์ฝ”๋„ˆ(ํŠน์ง•์ )๋งŒ์„ ๊ฒ€์ถœํ•˜๋Š” ๋ฐ ํŠนํ™”๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜
  • ๋™์ž‘ ์›๋ฆฌ:
    • ํ”ฝ์…€ ๋ฐ๊ธฐ ๋น„๊ต๋ฅผ ํ†ตํ•œ ์ฝ”๋„ˆ ๊ฒ€์ถœ (desccriptor๊ฐ€ ์•„๋‹ˆ๋‹ค)
    • ๋””์Šคํฌ๋ฆฝํ„ฐ๋Š” ์ œ๊ณตํ•˜์ง€ ์•Š์œผ๋ฉฐ, ๋‹ค๋ฅธ ์•Œ๊ณ ๋ฆฌ์ฆ˜(์˜ˆ: BRIEF, ORB)๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉ
  • ์žฅ์ : ์†๋„ ์ตœ์šฐ์ˆ˜, ์‹ค์‹œ๊ฐ„ ์‘์šฉ์— ์ ํ•ฉ
  • ๋‹จ์ : ๋ถˆ๋ณ€์„ฑ, ๋ถ„๋ณ„๋ ฅ์€ ๋””์Šคํฌ๋ฆฝํ„ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์˜์กด

 

+) ORB (Oriented FAST and Rotated BRIEF)

  • ํŠน์ง•: FAST๋กœ keypoint๋ฅผ ๊ฒ€์ถœํ•˜๊ณ , BRIEF๋กœ descriptor๋ฅผ ์ƒ์„ฑํ•˜๋ฉฐ, ํšŒ์ „ ๋ถˆ๋ณ€์„ฑ๊ณผ ๋น ๋ฅธ ์†๋„๋ฅผ ๋™์‹œ์— ์ถ”๊ตฌํ•œ๋‹ค
  • ๋™์ž‘ ์›๋ฆฌ:
    • FAST ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ๋น ๋ฅด๊ฒŒ keypoint ์ถ”์ถœ (desccriptor๊ฐ€ ์•„๋‹ˆ๋‹ค)
    • BRIEF ์ด์ง„ ๋””์Šคํฌ๋ฆฝํ„ฐ๋ฅผ ํšŒ์ „์— ๊ฐ•์ธํ•˜๊ฒŒ ๋ณ€ํ˜•
    • 256๋น„ํŠธ ์ด์ง„ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„
  • ์žฅ์ : ๋งค์šฐ ๋น ๋ฅด๊ณ , ์ž„๋ฒ ๋””๋“œ/์‹ค์‹œ๊ฐ„ ํ™˜๊ฒฝ์— ์ ํ•ฉ
  • ๋‹จ์ : SIFT/SURF ๋Œ€๋น„ ๋ถ„๋ณ„๋ ฅ์ด ๋‹ค์†Œ ๋‚ฎ์Œ, ์Šค์ผ€์ผ ๋ถˆ๋ณ€์„ฑ์€ ์ƒ๋Œ€์ ์œผ๋กœ ์•ฝํ•จ

 

5. Descriptor๊ฐ€ ์‹ค์ œ๋กœ ์–ด๋–ป๊ฒŒ ์“ฐ์ด๋‚˜?

  • ์ด๋ฏธ์ง€ ๋งค์นญ: ๋‘ ์ด๋ฏธ์ง€์—์„œ ์ถ”์ถœํ•œ ๋””์Šคํฌ๋ฆฝํ„ฐ ๋ฒกํ„ฐ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ(์˜ˆ: L2, ํ•ด๋ฐ ๊ฑฐ๋ฆฌ ๋“ฑ)๋ฅผ ๊ณ„์‚ฐํ•ด ์œ ์‚ฌํ•œ ํŠน์ง•์ ์„ ๋งค์นญํ•œ๋‹ค
  • SLAM: ๋กœ๋ด‡์ด ์ด๋™ํ•˜๋ฉด์„œ ์‹œ๊ฐ์ ์œผ๋กœ ๋™์ผํ•œ ์žฅ์†Œ๋ฅผ ์žฌ์ธ์‹ํ•  ๋•Œ, ๋””์Šคํฌ๋ฆฝํ„ฐ ๋งค์นญ์ด ํ•„์ˆ˜์ ์ด๋‹ค
  • ๊ฐ์ฒด ์ธ์‹/์ถ”์ : ๊ฐ์ฒด์˜ ๊ณ ์œ ํ•œ ๋””์Šคํฌ๋ฆฝํ„ฐ๋ฅผ ์–ป๊ณ , ์‹ค์‹œ๊ฐ„ ์ž…๋ ฅ ์ด๋ฏธ์ง€์—์„œ ๋™์ผ ๊ฐ์ฒด๋ฅผ ํƒ์ง€ํ•œ๋‹ค

'๐Ÿฆ„AI > Computer Vision' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

[Computer Vision/OpenCV] 22. Feature Descriptor(3) - SIFT & FLANN+Loweโ€™s Ratio Test  (0) 2025.05.28
[Computer Vision/OpenCV] 21. Feature Descriptor(2) - SIFT  (0) 2025.05.28
[Computer Vision/OpenCV] 19. Corner Detection - Harris Corner Detection  (0) 2025.04.24
[Computer Vision/OpenCV] 18. Edge Detection(2) - Canny Edge Detector  (0) 2025.04.23
[Computer Vision/OpenCV] 17. Edge Detection(1) - Sobel, Laplacian of Gaussian Filter  (0) 2025.04.22
'๐Ÿฆ„AI/Computer Vision' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
  • [Computer Vision/OpenCV] 22. Feature Descriptor(3) - SIFT & FLANN+Lowe’s Ratio Test
  • [Computer Vision/OpenCV] 21. Feature Descriptor(2) - SIFT
  • [Computer Vision/OpenCV] 19. Corner Detection - Harris Corner Detection
  • [Computer Vision/OpenCV] 18. Edge Detection(2) - Canny Edge Detector
mingyung
mingyung
  • mingyung
    KATE.log
    mingyung
  • ์ „์ฒด
    ์˜ค๋Š˜
    ์–ด์ œ
    • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ
      • ๐Ÿฆ„AI
        • Computer Vision
        • Paper
        • ML
        • DL
        • NLP
        • Reinforcement Learning
      • ๐ŸคธGraphics
        • OpenGL
      • ๐ŸAlgorithm
      • ์žก๋™์‚ฌ๋‹ˆ
      • ๐Ÿฅ”Project
        • Reversi Agent
        • Team22
        • [Project] Threepark
      • Computer Science
        • SW Engineering
        • Database
        • Computer Network
        • Compiler
        • Data structures
      • Dev
        • Spring
  • ์ตœ๊ทผ ๊ธ€

  • ์ธ๊ธฐ ๊ธ€

  • ํƒœ๊ทธ

    Computer Vision
    keypoint
    Gaussian
    Image Processing
    SIFT
    ML
    CV
    network
    ์ž๋ฃŒ๊ตฌ์กฐ
    ์ปดํ“จํ„ฐ ๋„คํŠธ์›Œํฌ
    localization
    Internet
    Loss function
    loss
    OSP
    computer network
    Filtering
    Surf
    Edge Detection
    feature descriptor
  • ์ตœ๊ทผ ๋Œ“๊ธ€

  • hELLOยท Designed By์ •์ƒ์šฐ.v4.10.3
mingyung
[Computer Vision/OpenCV] 20. Feature Descriptor(1)
์ƒ๋‹จ์œผ๋กœ

ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”